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Abstract We consider the problem of canonical labeling for a class of maps, which
include proteomics maps, which consist of a set of vertices or protein spots. If this
problem is solved and followed, different laboratories studying proteomics maps will
arrive at the same numbering of spots, which would facilitate comparisons of data
from different sources. In addition, the proposed canonical numberings of protein
spots would allow compiling a catalog of proteomics maps just as canonical labeling
allows making catalogs graphs, or molecules, and other canonically labeled systems,
which would make search for similar sets of maps very efficient. We approach the
problem by modifying the algorithm of Jeffrey for graphical representation of DNA
based on the chaos game. Graphical representation of DNA as a chaos game map has
an important property in that this representation allows one to assign sequential labels
to spots in a DNA map. We have modified the approach for sequential labeling of
chaos game map representations to graphical representation of any tabular data, such
as listing of (x, y) coordinates of protein spots of proteomics maps.

Keywords Canonical labels · Proteomics maps · Chaos game

1 Introduction

We consider the problem of finding canonical labeling of vertices of a map, with partic-
ular interest in proteomics maps, consisting of a set of protein spots viewed as vertices
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of a map, which would assign to vertices of a map unique labels. Canonical labeling of
vertices of maps is of interest in comparative studies of maps because identical maps
will have identical vertex labels, which would facilitate their recognition. In Graph
Theory canonical labeling of vertices makes possible to recognize identical graphs
and thus to solve the problem of graph isomorphism [1]. The particular canonical rule
that we use on graphs is based on search for numbering of vertices of a graph such
that it’s adjacency matrix, when it’s rows are read from left to right and from top to
bottom, gives the smallest binary number possible for the graph [2,3]. The resulting
canonical labels allow one to determine the symmetry of graphs (or a map) [4,5] and
they also allow constructions of graphs of certain classes [6,7], but these additional
properties of canonical labels are of no interest for proteomics maps, which as a rule
lack any symmetry. One disadvantage of above mentioned canonical rules is that find-
ing canonical labels for larger and more complex systems could be computationally
difficult.

In this article we will consider the problem of finding canonical labels for vertices
of a map, such as the map illustrated in Fig. 1, where the points can represent centers
of proteins spots in proteomics maps. Observe that vertices of maps have definite
positional coordinates, which fully determines the geometry of such maps. Once one
obtains canonical labels one can construct a binary code for such maps so that set of
maps can be ordered lexicographically and be catalogued. It appears that this important
problem, as far as we were able to find, has not been considered hitherto in the chemical
literature. There has been one report from our own laboratory [8] in which we have
assigned canonical labels to proteins spots of proteomics map of liver cells of healthy
male Fisher F344 rats and the rats treated with different peroxisome proliferators.
Canonical labeling of spots in this case was obtained by constructing a graph based
on partial ordering, the so called Hasse diagram, which has been superimposed over
the map. Thus the search for the canonical labels for a map was converted to a search
for the canonical labels of a graph.

Here we will outline a different route for determining labels for a spots of a map,
which is based on a property of the chaos game maps, introduced by Barnsley [9] for
representation of lengthy sequences of numbers. In particular we will follow the work
of Jeffrey [10], who modified the chaos game rules for representation of DNA. Let us
first outline the representation of DNA sequence as 2-D map of Jeffrey. The standard
representation of DNA sequence of n bases [(nucleotides adenine (A), cytosine (C),
guanine (G) and thymine (T)] consist of listing sequentially nucleotides, encoded by
the four letters, which appear as a random sequence of ACGT letters.

Let us illustrate the construction of 2-D DNA map of Jeffrey on a short string
of 92 bases standing for the first exon of human β globin gene, which starts with:
ATGGTGCACCTGAC . . . . First one draws a square and assigns to its four corners the
labels A, C, G and T, as illustrated in Fig. 1. To obtain the 2-D graphical representation
of this sequence, according to Jeffrey, one starts at the center of the square and moves
half way toward corner assigned to the first base in the sequence, which is corner A,
and arrives at the site for the first nucleotide A. From here one moves half way towards
the corner T, which is the second base in the sequence, which gives the position of
the second nucleotide. Again from this location one continues to move half way to
the corner of the third nucleotide, which is the corner G, and finds the site within the
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Fig. 1 Graphical representation of the first exon of human â-globin gene

square for third nucleotide in the sequence, and so on. After all 92 bases have been
depicted following the above algorithm, one obtains Fig. 2.

At first sight there is nothing remarkable about this map, which appears as a collec-
tion of random points within a square, but what is significant about the map is that there
is no loss of information about DNA in transforming the 1-dimensional sequences of
letters into 2-dimensional DNA map. This means that from the constructed 2-D DNA
map one can reconstruct the DNA sequence, and hence recover the sequential numbers
of all nucleotides. For more about the chaos game representation of DNA we direct
readers to a recent review article on graphical representation of proteins, which also
elaborates on graphical representations of DNA [11].

Let us briefly outline the reconstruction of DNA from its map. Again one starts
at the center of the square and looks for four sites in the square which are half way
from the center and the four corners A, C, G, T. One of the four sites will indicate the
position of the first nucleotide, as the vertex 1 of the map. One continues starting now
from the vertex 1 and looking for four sites which are half way from vertex 1 and the
four corners A, C, G, T. Again one of the four sites will be »occupied« by a nucleotide,
which receive label 2. In continuation one finds the next nucleotide looking for the
four sites half way from vertex 3 and the four corners and continues in the same way
to find next vertex, and so on. The process ends when the last vertex is found and all
spots received labels.

In this way one recovers the sequential labels for vertices of an 2-D DNA map,
because they have been constructed using the same algorithm. The problem that we
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Fig. 2 Map having 20 unlabelled vertices at random positions

wish to consider is how can one find »sequential« labels for an arbitrary 2-D map and
convert it to a 1-D sequence. Clearly the above algorithm for DNA maps will not hold
for general maps, because when selecting an arbitrary vertex to initiate the search for
labels, connecting it to the nearest corner of the square and moving in the opposite
direction in general case there will be no spot at the twice the distance from the corner
and the process could not be continued. Can we design an algorithm for assignment of
»sequential« labels to spots of an arbitrary map of n vertices scattered inside a square?
The answer is positive as will be seen in the next section, where we have outlined a
non-trivial modification of the chaos game algorithm for DNA. In this way it has been
possible to assign canonical labels to an arbitrary 2-D map of vertices, and if convert
any 2-D man into a map »line notation« (1-D sequence).

Before we go to the next section let us emphasize the significance of the above
mentioned transformation of 2-D map into a 1-D sequence. One can make a parallel
with the searches in chemical documentation for molecular codes, which have been
around for over 60 years. In 1949 Wiswesser [12,13] introduced molecular codes in
his “line notation” (that is 1-dimensions linear notation) known since as the Wiswesser
Line Notation, also referred to as WLN. This was the first line notation capable of
describing completely complex molecules. By “completely” we mean giving descrip-
tion of molecules without loss of information, so that once the WLN code is given,
the molecule can be reconstructed—which is the primary and essential property for
molecular codes. Since then a number of alternative approaches for construction of
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“line formulas” for chemical structures have been proposed. One of these schemes
of recent time, known as SMILES [14–17], is still widely used. However, very few
of over two dozen alternative linear encoding of molecular structures are sufficiently
mathematical, which in our view is a highly desirable quality for codes. These include,
among others, the approach of Balaban and Harary [18] for benzenoid hydrocarbons,
the approach of Read [19,20] for saturated acyclic and cyclic hydrocarbons, and the
approach of Lozac’h, Goodson et al. [21–24] based on nodal properties of graphs, the
approach of Knop, Trinajstić et al. [25,26] using n-tuple code, Zupan et al. on uni-
form spectral representation of chemical structures [27–30], and other [31,32]. The
topic of chemical nomenclature, canonical labeling of atoms and line notation are still
of considerable interest in chemistry, particularly efforts to use as much as possible
mathematical background and as little as possible conventional rules. In this respect
very promising is the most recently proposed algorithm named a “Walk Above Graph”
approach [33,34]. This approach, which may be viewed as purely mathematical (i.e.,
devoid of conventional inputs), has been earlier used only for acyclic graphs [33], but
now has been generalized to cyclic graph using letters (or alternatively non-binary
numbers) to label vertices of ring closure [34].

Our problem on designing canonical labels for spots of maps is conceptually
similar to searching for canonical labels for atoms in a molecule, because once
one obtains canonical labels for spots of a map one can order points (each char-
acterized by a pair of coordinates) into a sequence, a 1-dimensional object. This
may be of interest for computer manipulations of maps in searching for similar or
identical maps and compiling catalogue of maps of certain kind, such as proteomic
maps.

2 Modified labeling algorithm for general maps

We will outline the construction of canonical labels for general maps, which includes
proteomics maps. The approach is related to the construction of graphical repre-
sentation of DNA introduced by Jeffrey that was described in the previous section.
Let us start with an arbitrary map on 20 vertices illustrated in Fig. 2. The map of
Fig. 2 has been selected for illustration of the modified algorithm for labeling of
vertices of arbitrary maps and is obtained by using random number generator to
give random (x, y) coordinates in the domain (1, 100) and excluding repetition of
numbers. In Table 1 we show the x, y coordinates for the 20 unlabelled spots of
Fig. 2.

It is not essential to exclude repetition of random numbers unless they produce
the same pair of (x, y) coordinates that have already been selected. Equally, it is not
essential that we use integer coordinates, but using integers between 1 and 100 makes
the calculations and search for labels more transparent. Let us label the four edges of
the 100×100 units square with labels S (South, bottom), E (East, right), N (North, top),
and W (West, left). Then the four corners of the square assume labels SW, SE, NE and
NW for southeast, southwest, northwest and northeast, which have the coordinates:
(0, 0), (100, 0), (100, 100) and (0, 100), respectively.

We will adopted the following canonical rule:
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Table 1 The random (x, y) coordinates for 20 points of Fig. 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

x 3 19 23 86 13 100 95 65 89 46 50 35 56 79 82 41 11 99 32 87

y 26 94 66 30 24 59 71 43 68 4 17 15 91 72 18 1 53 2 10 88

Label 1 is assigned to the vertex closest to the center of one of the four half diagonals
from the center (x0 = 50, y0 = 50) to the four corners (0, 0), (100, 0), (100, 100)
and (0, 100). Let us also assume that there is only one point (xi , yi ) satisfying the
four conditions, to which thus we assign the canonical label 1. The point to obtain
the canonical label 2, is the point which is closest to the center of one of the four
line-segments from the point 1 (x1, y1) to the four corners SW, SE, NE and NW. Let
again assume that there is only one such point, having coordinates (x2, y2), which
satisfies the condition to be the closest to one of the new half distances from point 1 to
the four corners, to which we assign label label 2. The process continues. Continuing
from point 2 the next point, that will obtain canonical label 3, is the point which is
closest to the center of one of the four line-segments from the point 2 (x2, y2) to the
four corners SW, SE, NE and NW, and so on.

If it happens that at any step in the process there are more than one point at the
same distance from the line-segment centers one selects the point having smaller x
coordinate. If two points have the same x coordinate one selects the point having
smaller y coordinate.

In Table 2 we illustrate the search for the spot to be given canonical label 1. We
have to calculate the distances of all the 20 spots of Fig. 2 from the four centers of the
four line segments between the origin (50, 50) and the corners SW, SE, NE, and NW
of the square having coordinates: (0, 0), (100, 0), (100, 100) and (0, 100), respectively.
As one can see from Table 2 the smallest entry (shown in bold) in Table 2 is in the row
16 and the column NE, signifying that the spot currently having (an arbitrary) label
14 should have the canonical label 1.

In the next step one calculates distances of the remaining 19 points from the mid
points of the four line segments from the point having coordinates (79, 72) and the
four corners SE, SW, NW and NE. If one does this one finds that the point at (87,
88), in the quadrant NW, is at the smallest distance from the mid of the line-segment,
giving thus to this point canonical label 2. To obtain the remaining canonical labels
one continues the process. In Table 3 we have listed for the sought canonical labels
the quadrants, the minimal distances, the (x, y) coordinates, the old (arbitrary) labels
and the binary labels for the quadrants of spots. The new, canonical labels for the map
of Fig. 2 are illustrated in Fig. 3, which gives the solution to the problem of unique
canonical labeling of unlabeled map of Fig. 2. The first, fourth and fifth column of
Table 2 have essential information for labeling (or relabeling) of any geometrical map
based on set on n spots (vertices). The listed minimal distances are of no interest
except for verifying the accuracy of the reprorted calculations of canonical labels. All
calculations shown are made using microsoft Excel program.

The list of quadrants may, however, be of some interest as it offers construction of
a binary code for the map. The code is based on fusing the x, y coordinates of the four
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Table 2 Distances of the 20 spots of Fig. 2 from the centers of the line segments between the origin (50, 50)
and the corners SW, SE, NE, and NW of the square having coordinates: (0, 0), (0, 100), (100, 100) and (0,
100), respectively

Spot SW SE NE NW Spot SW SE NE NW

1 22.02 72.01 87.09 53.71 11 26.25 26.25 63.16 63.16

2 69.26 88.87 59.14 19.92 12 14.14 41.23 72.11 60.83

3 41.05 66.22 52.77 9.22 13 72.92 68.68 24.84 34.89

4 61.20 12.08 46.32 75.80 14 71.59 47.17 5.00 54.08

5 12.04 62.01 80.28 52.39 15 57.43 9.90 57.43 80.61

6 82.35 42.20 29.68 76.69 16 28.84 41.62 81.44 75.71

7 83.76 50.16 20.40 70.11 17 31.30 69.86 67.68 26.08

8 43.86 20.59 33.52 51.22 18 77.49 33.24 76.84 103.95

9 77.10 45.22 15.65 64.38 19 16.55 45.54 77.94 65.38

10 29.70 35.81 76.69 74.04 20 88.39 64.13 17.69 63.35

Table 3 The quadrants, the minimal distances, the (x, y) coordinates, old (arbitrary) labels and binary
labels for the quadrants of spots

Canonical Quadrant Distance Coordinates Old label Binary code

1 NE 5.00 (79, 72) 14 11

2 NE 3.20 (87, 88) 20 11

3 NW 12.85 (56, 91) 13 10

4 NW 9.12 (19, 94) 2 10

5 SW 6.18 (11, 53) 17 00

6 SW 2.55 (3, 26) 1 00

7 SE 4.27 (50, 17) 11 01

8 SW 7.16 (32, 10) 19 00

9 NE 11.70 (100, 59) 6 11

10 NE 9.86 (95, 71) 7 11

11 SE 12.75 (86, 30) 4 01

12 NE 5.00 (89, 68) 9 11

13 SE 20.30 (82, 18) 15 01

14 SW 7.07 (46, 4) 10 00

15 NE 12.04 (65, 43) 8 11

16 SW 6.98 (35, 15) 12 00

17 NW 10.12 (23, 66) 3 10

18 SW 9.12 (13, 24) 5 00

19 SE 19.01 (41, 10) 16 01

20 NE 21.27 (99, 2) 18 11
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Fig. 3 Canonical labels for vertices of the map of Fig. 2

corners of the square assuming that the square has unit sides. Then one obtains for the
four corners SW, SE, NE, and NW the binary codes 00, 01, 11, and 10, respectively.
A list of binary codes of quadrants in which successive spots are located yields for the
map of Fig. 2 the code:

1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 1 1

An advantage of this code is that it is very simple, though not necessarily unique.
Hence, such code can be used for pre-screening data (catalogues of maps). If in pre-
screening one finds two maps to have the same binary code then additional, more
discriminating codes, will have to be used to establish if two maps are identical or are
different. We will describe one such more discriminating binary code of approximately
the same length in the next section.

Alternatively, one may consider a code based on listing coordinates of the points.
Usually, already coordinates of few initial spots may suffice to discriminate between
non-isomorphic maps. In the case of the map of Fig. 2 the code based on the (x, y)
coordinates of spots will start with: 797287885691. . . . One can truncate such codes
after a dozen digits, because it is very unlikely that non isomorphic maps will have
long list of ordered points in the same locations.

3 On characterization of canonical maps

Once one has found canonical labels for a map one can construct a selection of matri-
ces that can generate map invariants. Such list of invariants can be augmented by
including also the list of row sums, as these have already been ordered by canonical
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Fig. 4 The graph of partial ordering of vertices of the map of Fig. 2

labels. One can consider characterization of the map based on the distance matrix as
a source of numerous distance-related map invariants analogous to distance related
graph invariants. However, the distance matrix has a disadvantage of being dense,
and consequently computationally intensive, which could be time-consuming. Use
of sparse matrices for construction of invariants would be preferred alternative. One
can associate sparse matrices with maps by superimposing geometrical objects over
the map, the adjacency matrix and distance-weighted adjacency matrix of which will
be sparse matrices. Such an approach has been considered for characterization of
proteomics maps [35,36] and proteins [11]. Here we will consider two such pos-
sibilities: (1) Construction of a graph of partial order for the vertices of the map
[37,38]; and (2) Construction of a graph of sequential nearest neighbors for the ver-
tices of the map [39,40]. In both cases map will be represented by a sparse binary
matrix.

3.1 Graph of partial ordering of vertices of a map

In Fig. 4 we show the diagram of partial ordering of the 20 vertices of Fig. 3, which is
based on domination of coordinates (xi , yi ) for pairs of vertices. If vertex i dominates
vertex j , or the other way round, the two vertices will be connected by a line. Observe
that all the connecting lines have positive slope, which implies that the (x, y) coordinate
of a vertex above dominate (are numerically greater) the corresponding coordinates of
the vertex below. From the adjacency matrix the distance-adjacency matrix, DA, can
easily be constructed by replacing the non-zero entries in the adjacency matrix with
the corresponding distances between adjacent vertices. The DA matrix is therefore
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Fig. 5 The graph of sequential nearest neighbors

weighted adjacency matrix with its elements given by the geometrical distances of
adjacent vertices.

3.2 Graph of sequential nearest neighbors for the vertices of the map

In Fig. 5 we show the graph of the sequential nearest neighbors for the 20 vertices of
the map of Fig. 3. Observe that we have not said: »for the 20 vertices of the map of
Fig. 2« , even though map 2 and map 3 is the same map. The difference is that map
of Fig. 2 has no labels for its vertices and the map of Fig. 3 has unique canonical (not
arbitrary) labels. In order to construct the sequential nearest neighbors graph we need
to have labeled graph. If we want a unique solution we should base our construction
on graph having unique canonical labels.

The construction starts by connecting the vertex 1 and vertex 2. Vertex 3 is then
connected to either vertex 1 or vertex 2, depending on which of the two already
connected vertices are closer to vertex 3. If both vertices are at the same distance
vertex 3 is, by convention, connected to the vertex having the smaller label. One
continues construction of the sequential nearest neighbors graph by connecting vertex
4 to the closest vertex among those already connected. When all vertices have been
connected the process ends and the result is an acyclic graph superimposed over the
map illustrated in Fig. 5. In the case of the map of Fig. 3 it turned out that only in
the case of vertex 19 there were two vertices at the same distance, the vertices 14 and
16. By following our convention we connected vertex 19 to vertex 14, having smaller
label.

The graph of sequential nearest neighbors also allows one to construct generalized
distance-adjacency matrix by replacing the non-zero entries in the adjacency matrix
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with the corresponding distances between adjacent vertices. However, the graph of
sequential nearest neighbors has additional advantages over the graph based on partial
ordering, which are of interests for characterization of maps. First, being acyclic graph,
it allows one to construct terminal matrix [41–44], in which are recorded only the
distances between terminal vertices of the graph, which are this case vertices: 10, 12,
15, 16, 17, 18, 19 and 20. This offers representation of the map of Figs. 2 or 3 by a
matrix of smaller order, a 7×7 distance matrix instead of a 20×20 matrix. According
to a theorem of Zaretskii [45,46] there is no loss of information with terminal matrix,
as it contains all information on a graph, which can be reconstructed form it.

The graph of the sequential nearest neighbors also allows one to construct an alter-
native binary code for the map that has a high discriminatory power then previously
mentioned binary code for the map, even though it is also not unique. To arrive at
this binary code we will use a »walk above the graph« [33] for the construction of its
binary code. The »walk above the graph« algorithm for construction of binary code
for acyclic graphs can be viewed as suitably and significantly modified »walk around
a tree« of Read [47]. The »walk around code« for trees assigns to each edge of a graph
binary labels 0 and 1 in the following way: One starts the »walk around a tree« at any
vertex and moves clockwise or counter-clockwise around the graph assigning label 0
to any edge that one pass for the first time. When the same edge, as the walk around
the tree progresses, is viewed again from the other side of the graph one assigns to it
label 1. Clearly such labeling of edges is not unique because it depends on the vertex
selected to initiate the walk around, on the sense of moving around the graph (clock-
wise or counter-clockwise), and on the 2-D pictorial representation of the graph, that
is, the final code will depend also on how graph is drawn. The code of the graph is
constructed by listing the binary labels in order of their assignment.

In the case of the sequential nearest neighbors, because the graph that is embedded
over the map this eliminates alternative pictorial representations of the graph. But,
even if graph would be drawn arbitrarily, as long as vertices retain the same canonical
labels, the resulting code will be the same, because we have a rule how to proceed from
one vertex to another. Because the graph has canonical labels, this fixes the starting
point for the construction of the binary code. Finally, because will be moving above
the graph, not around, and we will at every site move in the direction of the nearest
vertex having the smallest label, this eliminates the ambiguity of choosing between
clockwise or counter-clockwise directions and choosing between different edges at
branching vertices. As a result our binary code will always unique. However, it is
possible to have two or more non-isomorphic maps that will have the same graph of
sequential nearest neighbors, though one does not expect this to be frequently the case.

Let us now construct the »walk above the graph« binary code for the sequential
neighboring graph of Fig. 5. Looking at Fig. 5 we start from vertex 1 and move toward
vertex 2, 3, 4 arriving at vertex 5, which is a branching vertex. Hence, to edges (1,2),
(2,3), (3,4) and (4,5) are assigned label 0. Thus our code starts with 0 0 0 0. At the
branching vertex 5 according to our rule we move toward vertex 6 (having the smaller
label) and continue to 7. Similarly when arriving at vertex 8 we go to vertex 14 and
end with vertex 19. In this way we have additional five zeros for edges (5, 6), (6, 7),
(7, 8), (8, 14) and (14, 19), giving for the code 0 0 0 0 0 0 0 0 0 when we arrived to
vertex 19. Now we have to go back to vertex 14 and 8 and have to assign to edges
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(19, 14) and (14, 8) label 1, because we passed these edges before, which thus gives
for the code: 0 0 0 0 0 0 0 0 0 1 1. Coming back to vertex 8 we have first go to vertex
16, because edge (8, 16) has not yet been visited, rather than returning to vertex 7,
because edge (8, 7) has already been visited. The rule is that edges that have not yet
obtained label 0 have precedent over edges that already have binary assignment zero.
Our code thus continues with 0 for edge (8, 16), then 1 for edge (16, 8) and 1 for edge
(8, 7), giving up to this point: 0 0 0 0 0 0 0 0 0 1 1 0 1 1.

With this introductory information it is now not difficult to proceed and complete
the code which in its entirety is:

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 1 1 1 0 1

Which has 38 binary characters, twice the number of edges of the graph. Observe
that to an edge (i, j) is assigned label 0 if i < j and label 1 if i > j .

3.3 Dual of the map

The »walk above the graph« code, besides offering binary code for a map allows one
to construct a dual of the sequential neighbor graph embedded on the map, to which
we will refer as the dual of the map. To obtain this dual one follows the algorithm
outlined in the book of Rouse Ball [48,49], which starts by replacing the binary entries
0 and 1 of the code by the left and the right brackets. For the above »walk above the
graph« code this gives:

((((((((())()))())()))))(()((())()))()

In the following step one connects the adjacent left and right brackets forming
thus circles. In the above case there are eight such instances, corresponding to eight
terminal vertices. Starting from left one can assign labels 19, 16, 18, 17, 10, 20, 15,
and 12 to the eight constructed circles:

Then one ignores the circles, and pretending that they have been erased, continues
to connect adjacent left and right brackets. Erasing circles corresponds to pruning a
tree (that is, erasing terminal vertices and their incident edges). In the above case, after
pruning eight terminal vertices, one obtains a path of length 11 with terminal vertices
14 and 13. In this way one obtains two novel circles, the first belongs to vertex 19
and the second belongs to vertex 20. The process continues till all left brackets are
connected to corresponding right brackets, which results in map dual shown in Fig. 6.

From the dual of Fig. 6 one can reconstruct not only the acyclic graph on which
it has been based but also the labels of the vertices. To obtain the graph one inserts a
vertex in each of the circles or ellipses of the dual graph including adding vertex to
the outside area. Then one connects vertices in adjacent areas which are separate by
single curved line. The result is graph of the acyclic graph used for construction of
the binary code. Then one can follow with assignment of labels as outlined earlier if
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Fig. 6 Dual of the map based on the sequential nearest neighbor graph of Fig. 5

desired. Once one has the canonical labels of vertices from Table 3 one can recover
the coordinates of spots of the map and one can thus reconstruct the map. Observe
that the map dual in Fig. 6 consists of three disjoint segments, which correspond to
three branches of the starting vertex 1 of the map. Similarly, if one erases the outer
ellipse in the central segment, which belongs to the edge (1, 12), one has two disjoint
segments, which correspond to the two remaining branches of the vertex 9, and so on.
Map duals offer a qualitative representation of a map, which may have some visual
advantages in comparative studies of maps and map classifications.

4 Concluding remarks

Canonical labeling of vertices (spots) of maps are essential not only for establish-
ment of isomorphism of maps, which in turn is important in comparative studies of
maps, but also as it allows different researchers in different laboratories to come to a
common labeling and common coding for maps. A side benefit of canonical labels is
the possibility of using matrix entries as additional map invariants because they have
been already ordered. The canonical labels here introduced are conceptually and com-
putationally simple, because finding them does not involve exponential complexity,
which is characteristic in searches for canonical labels based on the adjacency matrix,
which when its rows are read from left to right and from top to bottom, produces the
smallest binary number possible. Nevertheless, the novel canonical labels outlined in
this article (based on modified chaos game representation of DNA and the sequential
nearest neighbor graph of the map) will allow one to construct binary codes of high
discriminatory power for maps and thus make possible to build catalogues of maps
that could be more readily searched for data on the same map from different sources
and searching for similar maps.
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3. M. Randić, On canonical numbering of atoms in a molecule and graph isomorphism. J. Chem. Inf.

Comput. Sci. 17, 171–180 (1977)
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